

LA-UR-17-29664

Approved for public release; distribution is unlimited.

Title: Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium

Process Solutions

Author(s): Pantea, Cristian

Sinha, Dipen N. Lakis, Rollin Evan

Beedle, Christopher Craig

Davis, Eric Sean

Intended for: Report

Issued: 2017-10-20

Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

Cristian Pantea, Dipen Sinha, Rollin Lakis, Chris Beedle, Eric Davis

Oct 16, 2017

Agenda

- Introduction
- Heavy Water Challenge
- Swept-Frequency Acoustic Interferometry
- Results for Heavy Water Experiments
- Uranium Process Solution Challenge
- Results for Uranium and Nitric Acid Solutions
- Summary

Project Goals

- Leverage Laboratory scientific strength in physical acoustics for critical international safeguards applications
- Create hardware demonstration capability for noninvasive, near real time, and low cost process monitor to capture future technology development programs
- Measure physical property data to support method applicability

Heavy Water Production Monitoring: A New Challenge for the IAEA

Arak Heavy Water Production Facility Girdler sulfide process + distillation

JCPOA-130 metric ton limit

Noninvasive Measurements in SFAI Cell

Lab environment

Anton-Paar

SFAI: Swept-Frequency Acoustic Interferometry

- was developed 20+ years ago in our lab

Lab SFAI cell

UNCLASSIFIED

Large Scatter in Literature Values

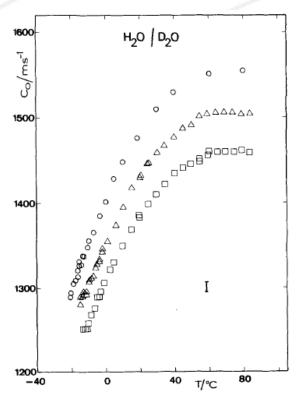
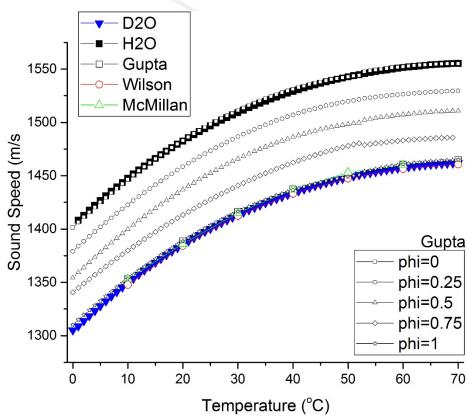
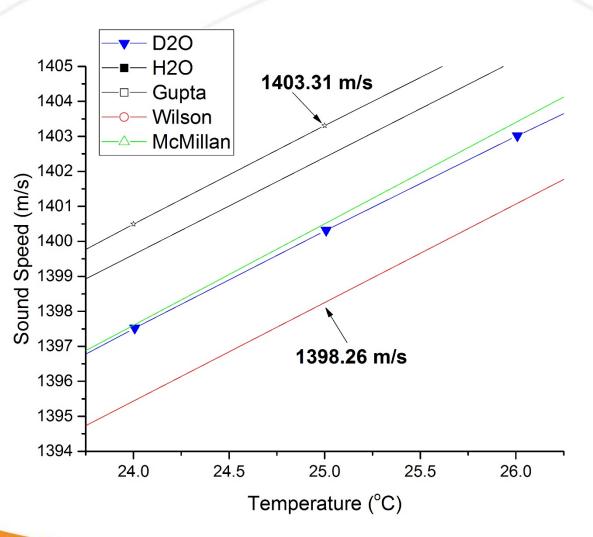



FIG. 1. Sound velocity vs temperature in 0: pure H_2O ; α : pure D_2O ; Δ : $(H_2O)_{0.575}(D_2O)_{6.475}$ solution.

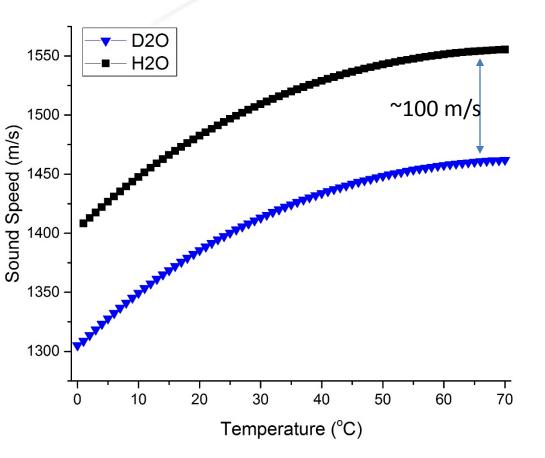
Conde, J. Chem. Phys. 76(7), 1 Apr. 1982

Literature: old data Large scatter


Gupta, J. Chem. Thermodynamics 1976, 8,627 Wilson, JASA 1961, vol 33, no. 3, 314 McMillan, JASA 1947, vol 19, no. 6, 956

D₂O purity not well known

Large Scatter in Literature Values


Literature data at 25°C for 'pure' D₂O show a scatter of about 5% in concentration.

*Wilson used 99.82% D₂O

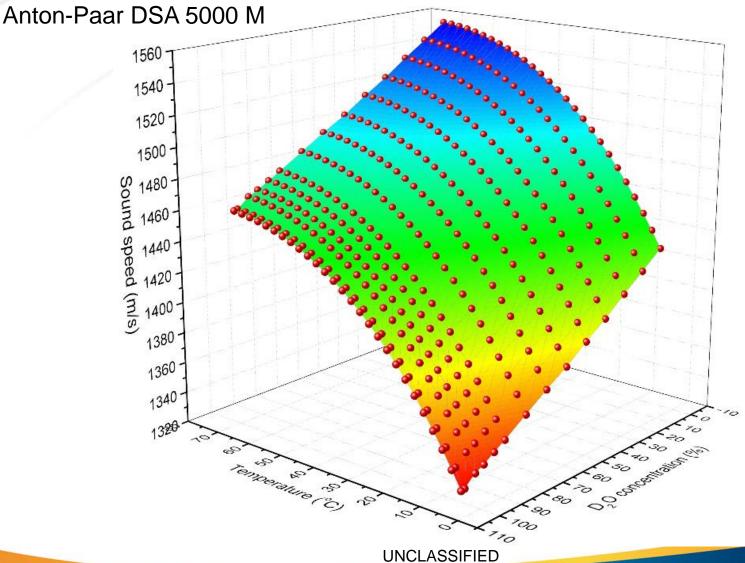
Highest Precision Sound Speed Data Available: New Standard in H/D

!Reference data – calibration curve

We can measure accurate and precise sound speed, to the first decimal point

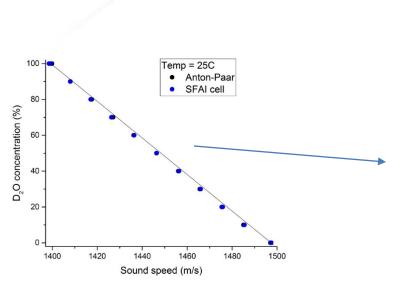
 \rightarrow high precision/accuracy for D₂O concentration, ~ 0.1%

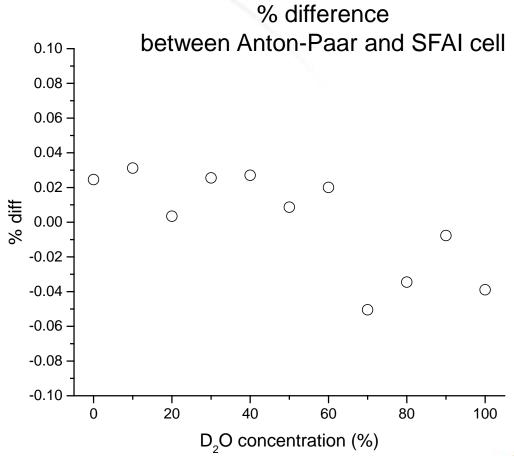
nuclear reactor grade:


99.75-99.98% deuterium enrichment

*precisions of ± 0.2-0.4% using other methods, gravimetric, float bath, displacement, mass spectrometry, IR Spectroscopy, emission spectroscopy, nuclear magnetic resonance, cryoscopy, refractometry, etc.)

~400 pts of data


Calibration data taken with a Density and Sound Velocity Meter:



Noninvasive Measurements in SFAI Cell

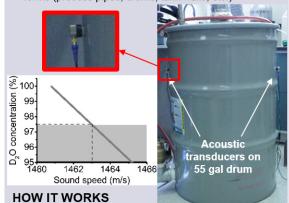
New funding from NA241 SGTech

Non-invasive acoustic monitoring of D₂O concentration

Field portable and process monitoring solutions for heavy water verification of the Art Approach. Metrics and Outcomes

Background/State of the Art

- Current methods: periodic sampling or invasive continuous monitoring
- · No persistent monitoring and verification
- · Relatively expensive
- · Needs significant user interaction
- · No other entity works on acoustics approach


Innovation

- · Use acoustics and clamp-on transducers
- Noninvasive, unattended, continuous monitoring
- Preliminary data very promising. Sound speed sensitive to H/D content.

MAIN GOAL

- Reduce inspectors presence/increase verification coverage
- Demonstrate functionality in the field on different storage forms (process pipes, drums, tank walls, etc.)

- Determine accurate sound speed in fluid using Swept Frequency Acoustic Interferometry (SFAI).
- We already demonstrated high precision/accuracy for D₂O concentration, ~ 0.1% (relative) in laboratory.

ASSUMPTIONS, LIMITATIONS & CONSTRAINTS

 Constraints: at low temperatures (5°C), the temperature has to be measured within 0.03°C. However, at high temperatures (70°C), measurements within 0.5°C will suffice.

Impact

- Safeguards relevance
 - Current approaches do not provide noninvasive continuous monitoring and verification by the IAEA
 - · CONOPS 1: man portable tool
 - CONOPS 2: continuous unattended verification
- Long-Term R&D STR-375 LTRD Capability 5/LTRD Milestone 5.6
- IAEA STR-382 Objective: SGTS-001, NDA Techniques, Objective 3
- Start of FY TRL = TRL5
- End of FY TRL (Planned) = TRL6
- End of project TRL (Planned) = TRL8

Goals/Action Plan

- · Planned tasks:
 - 1 Portable on-site inspection tool
 - 2 User-friendly software interface
 - 3 Continuous unattended monitoring
 - 4 Field tests and technique refinement

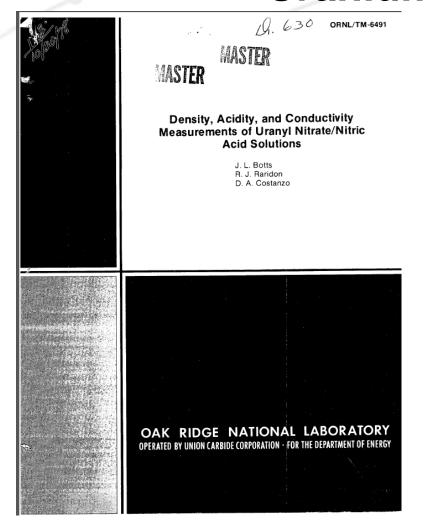
Future FY

- · Continuous unattended monitoring
- · Field tests and technique refinement

Team

Los Alamos National Laboratory

PI: Cristian Pantea pantea@lanl.gov, 505-665-7598



Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan

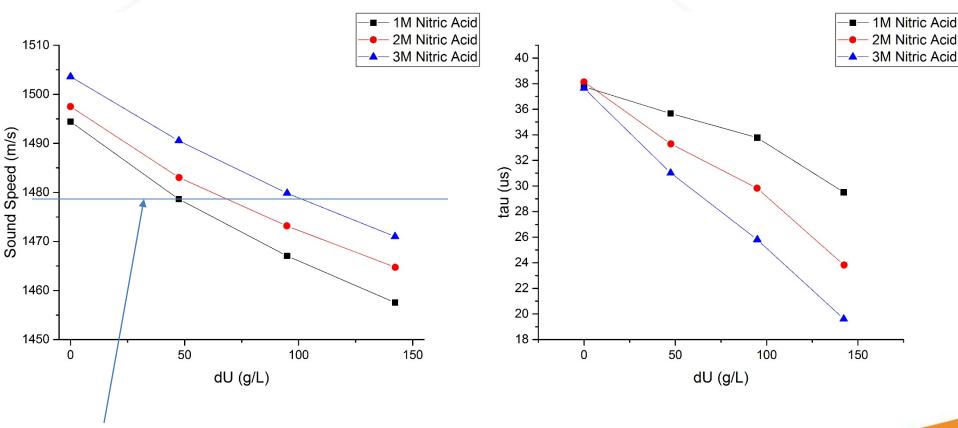
Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions

The density of each solution used in the experiment was determined by pycnometric measurement to an accuracy of $\pm 0.05\%$.

The conductivities, i.e., specific conductances, of the experimental solutions were measured using a Radiometer conductivity meter (type CDM3) with a dip-type conductivity cell. The cell constant for the meter was experimentally determined to be 1.00 cm within 1.34%. This meter is equipped with temperature compensation and is capable of measuring conductances from 1.5 microsiemens to 200 millisiemens.

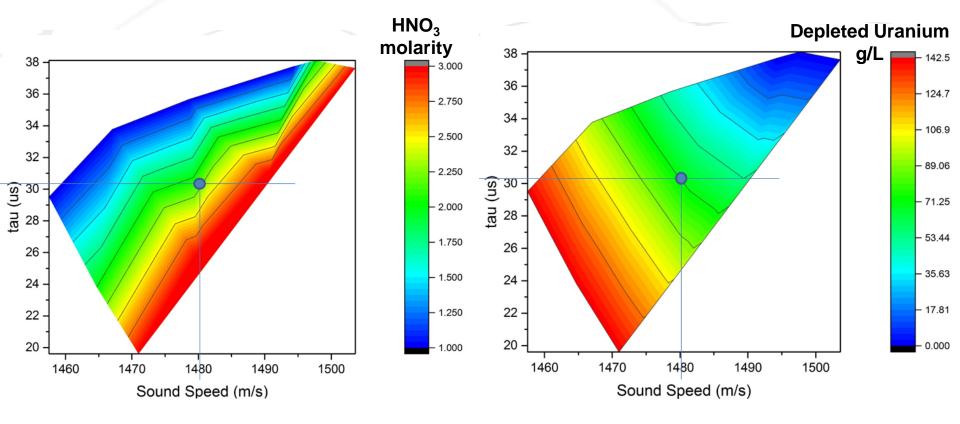
SUMMARY

Conductivity, density, and acidity measurements were made on a series of uranyl nitrate solutions under a number of process conditions of temperature and acidity. It has been found from this study that the acidity and conductivity of the solutions were quite sensitive to the uranium and nitrate concentration, whereas the density is sensitive only to the uranium concentration.


The complex relationships among acidity, conductivity, temperature, density, and concentration were quantified in this study. Computer programs were written to quickly predict or calculate the uranium and nitrate concentrations where (a) the temperature, density, and conductivity or (b) the temperature, density, and pH are known. The use of these programs will allow precise process control to be exercised in the preparation of HTGR recycled fuel particles by the simple monitoring of the density, temperature, and either conductivity or pH of the process solution.

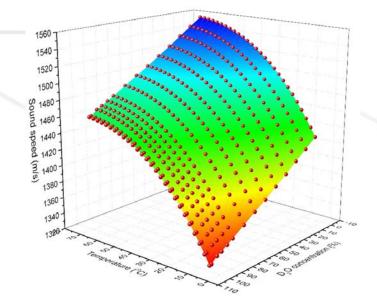
Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions

1 measurement -> 2 variables Sound speed and Attenuation


Sound speed alone does not uniquely identify U concentration

1 measurement -> 2 variables

Determining both Sound speed and Attenuation provides both concentrations of **HNO**₃ and **Depleted Uranium!**



Summary

- Developed methodology for in-situ and onsite verification of D2O inventory
- New method for U process solution verification -Disruptive for process monitoring!!!
- Simple, low cost, modest electronics, easy deployable

